B.A.DEGREE EXAMINATION - ECONOMICS

FIRST SEMESTER - APRIL 2019
16/17/18UEC1MCO2- MATHEMATICS FOR ECONOMICS

Date: 04-04-2019
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART - A

ANSWER ANY FIVE QUESTIONS IN ABOUT 75 WORDS EACH (5 X $4=20$ marks)

1. When the price is Rs. 50 , Fifty pens are available for sale ; when the price is Rs.75, Hundred of the pens are available for sale. What is the Supply function?
2. Given $\mathrm{A}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}-1 & 2 & 4 \\ 1 & -2 & -4 \\ -1 & 2 & 4\end{array}\right]$

Prove that $A^{2}=A$ and $B^{2}=B$.
3. State the conditions for maxima, minima and point of inflexion for the function $Y=f$ (X).
4. Find A^{-1} if $\mathrm{A}=\left[\begin{array}{lll}4 & 2 & 5 \\ 3 & 1 & 8 \\ 9 & 6 & 7\end{array}\right]$
5. Derive the relationship between AC and MC .
6. Given the demand function $\mathrm{Q}=\frac{5 P}{[1-3 P]^{2}}$ find the price elasticity of demand at price $\mathrm{P}=$ 20.
7. Evaluate $\int \frac{5 x}{[x-1]^{2}} \mathrm{dx}$.

PART - B

ANSWER ANY FOUR QUESTIONS IN ABOUT 300 WORDS EACH ($4 \times 10=40$)

8. Given the matrix $\mathrm{A}=\left[\begin{array}{ccc}\mathbf{8} & -\mathbf{5} & \mathbf{2} \\ 2 & 9 & 3 \\ 3 & -\mathbf{1} & \mathbf{0}\end{array}\right]$ prove any three properties of Determinant.
9. Explain the market demand function of a firm is given by $8 \mathrm{P}+\mathrm{Q}-64=0$
and the firm's average cost function takes the form
$\mathrm{AC}=(8 / \mathrm{Q})+6-0.4 \mathrm{Q}+0.08 \mathrm{Q}^{2}$ Find the level of output and price which maximizes profit.
10. The demand function for a particular commodity is $\mathbf{Y}=\mathbf{2 0} \mathbf{- 4} \mathbf{X}$ and the

Average cost to the monopolist is $\mathbf{A C}=\mathbf{2}$. If a tax of ' \mathbf{t} ' per unit is imposed on the monopolist, determine his maximum possible profit and the value of ' t ' for which tax revenue is maximized.
11. Solve the following simultaneous system by using Cramer's rule

$$
\begin{gathered}
3 x+y-z=2 \\
x-2 y+z=-9 \\
4 x+3 y+2 z=1
\end{gathered}
$$

12.If $Y=X^{3}-12 X+12$

Find the maximum / minimum values of the function .
13. Explain the various functions and its uses in economic analysis.
14. a) Explain the properties of definite integrals.
b) Evaluate $\int_{1}^{3}\left(x^{3}+x+6\right) d x$.

PART - C

ANSWER ANY TWO QUESTIONS IN ABOUT 900 WORDS EACH($2 \times 20=40$)
15. How does Calculus and Matrix Algebra help in Economic analysis and Business Decision making?
16. Given $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 0 & 4 \\ 0 & 2 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}-1 & 3 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 4\end{array}\right]$

Prove that $[A B]^{-1}=B^{-1} A^{-1}$
17. A firm has a total cost function $T C=0.2 Q^{2}+2000 Q+22500$.

The demand function of a firm is $P=2500-0.8 Q$ where $P=$ price and Q output. Find out the price and output level which
a) Minimize average cost b) Maximize total revenue
c) Minimize marginal Cost and
d) Maximize profit.
18.If $\mathrm{MR}=15-5 \mathrm{x}$ and $\mathrm{MC}=10-3 \mathrm{x}+3 \mathrm{x}^{2}$ find the profit maximizing output and the corresponding total profit assuming pure competition.

